Tracking Dense Substructures in a Dynamic Graph

Srikanta Tirthapura
Iowa State University

(joint work with Michael Svendsen, Apurba Das, Sneha Singh)
Problem

Track Emerging (and Disappearing) dense substructures in a large dynamic graph
Problem

Track Emerging (and Disappearing) dense substructures in a large dynamic graph

\[\text{Clique (w,v,x) has emerged} \]
\[\text{Clique (u,v,x) has emerged} \]
\[\text{Cliques (v,w) (u,v) (u,x) (w,x) are subsumed by other cliques} \]
Problem

Track Emerging (and Disappearing) dense substructures in a large dynamic graph

Edge \((v,x)\) appears

Edge \((u,w)\) appears

(u,v,x) and (v,w,x) subsumed
(u,v,w,x) has emerged
Why Track Dense Substructures in a Dynamic Graph?

• Key Problem in Real-Time Big Data Analytics

• Real-Time News Mining: Used in detecting emerging news stories on Twitter (Angel et al., 2012 and 2014)
Many Notions of a Dense Substructure in a Graph

• Maximal Cliques
• Maximal Bicliques
• Near-Cliques
• Near-Bicliques
• Densest Subgraph, Triangle-Densest Subgraphs
• K-Core, K-Plex
• ...
Maximal Clique

- A clique C in a graph G=(V,E) is a subset of V such that there is an edge between each pair of vertices in C.

- A clique C is maximal if it is not contained within any other clique in G.
Maximal Clique Enumeration Problem

Given an undirected graph $G = (V,E)$, enumerate all maximal cliques.
Let $\text{Cliques}(G)$ denote all maximal cliques in G.
Maximal Clique Enumeration

Given an undirected graph $G = (V,E)$, enumerate all maximal cliques in G.
Dynamic Maximal Cliques

Initial graph $G = (V,E)$
Add a set of edges E' to get $G' = (V, E + E')$
$C = \text{Cliques}(G)$, $C' = \text{Cliques}(G')$

New Cliques $\quad N(G,G') = C' - C$
Deleted (Subsumed) Cliques $\quad D(G,G') = C - C'$
Symmetric Difference $\quad S(G,G') = N \cup D$

Questions:
• Size of Change: How large can $N(G,G')$, $D(G,G')$, $S(G,G')$ be?
• How to Enumerate Elements of N, D, S (without enumerating C and C')?
Naïve Solution to Dynamic Maximal Cliques

• Enumerate \(C = \text{Clique}(G) \)
• Enumerate \(C' = \text{Clique}(G + E') \)

• Compute the difference

• Problems:
 • The difference maybe small while the sets are large
 • Space is an issue, since the sets of maximal cliques can be large
Questions

• Size of Change: How large are $N(G,G')$, $D(G,G')$, $S(G,G')$

• How to Enumerate Elements of N, D, S (without enumerating all maximal cliques in C and C')?

• Is Enumeration possible in a change-sensitive manner (time proportional to size of change)?
Maximal Cliques in a Static Graph

Moon and Moser (1965)

The largest possible size of Cliques(G) is on an n-vertex graph is \(f(n) \), where

\[
 f(n) = \begin{cases}
 3^{n/3} & \text{if } n \mod 3 = 0 \\
 4.3^{(n-4)/3} & \text{if } n \mod 3 = 1 \\
 2.3^{(n-2)/3} & \text{if } n \mod 3 = 2
\end{cases}
\]

The above bound can be achieved by specific graphs (called Moon-Moser Graphs)
Dynamic Cliques: Single Edge Addition

Result

When a single edge $e=(u,v)$ is added to a n vertex graph G, to get G'

• There exist G, G' such that $|S(G,G')| = 3f(n-2)$

• For any G, G', $|S(G,G')| \leq 3f(n-2)$
Single Edge \(e=(u,v) \) added

\[G \]

\[F = \text{Moon Moser Graph on (n-2) vertices} \]
Single Edge $e = (u, v)$ added: New Cliques

For each maximal clique in F there is one new clique in G' that was not present in G

F = Moon Moser Graph on $(n-2)$ vertices
Single Edge $e=(u,v)$ added: Subsumed Cliques

For each maximal clique in F there are two cliques that were maximal in G, but not in G'

$F = \text{Moon Moser Graph on (n-2) vertices}$
Single Edge $e=(u,v)$ added: Total Change

When a single edge $e=(u,v)$ is added to a n vertex graph G, to get G'
There exist G, G' such that $|S(G,G')| = 3f(n-2)$

F = Moon Moser Graph on $(n-2)$ vertices
Single Edge $e=(u,v)$ added: Total Change

When a single edge $e=(u,v)$ is added to a n vertex graph G, to get G'
For any G, G', it must be true that $|S(G,G')| \leq 3f(n-2)$
Single Edge $e=(u,v)$ added: New Cliques

When a single edge $e=(u,v)$ is added to a n vertex graph G, to get G'

For any G, G', it must be true that $|N(G,G')| \leq f(n-2)$

Each new maximal clique in G' must have been a maximal clique in F
Single Edge $e=(u,v)$ added: Subsumed Cliques

When a single edge $e=(u,v)$ is added to a n vertex graph G, to get G'
For any G, G', it must be true that $|D(G,G')| \leq 2f(n-2)$

Each subsumed maximal clique be of one of two types
• It contains u, and is subsumed by a clique that now contains v
• It contains v, and is subsumed by a clique that now contains u
Single Edge $e= (u,v)$ added: Enumerate Change

1. Compute $F = N(u) \cap N(v)$
2. Compute induced subgraph $G(F)$
3. Enumerate all maximal cliques in $G(F)$
 a. Worst-Case Optimal, such as Tomita-Tanaka-Takahashi (2006), or Eppstein-Loffler-Strash (2010)
 b. Output Sensitive, such as Tsukiyama et al. (1977) or Makino-Uno (2004)
4. For each clique c above, there is one new clique formed
5. For each clique c above, check two cliques and see if they are maximal in G; if so, these are subsumed cliques
Enumerate Change for One Edge: Resource Complexity

• Space: Graph G needs to be stored, but not Cliques(G)

• Time to enumerate change is proportional to the size of the change
Multiple Edges \{e_1, e_2, \ldots, e_k\} added

Result

When a subset of edges \(E'\) added to a \(n\) vertex graph \(G\), to get \(G'\)

- There exist \(G, G'\) such that \(|S(G,G')| = 1.849 f(n)|

(Conjecture) For any \(G, G'\), \(|S(G,G')| \leq 1.849 f(n)\)?

Note that \(2f(n)\) is a trivial upper bound
Multiple Edges added: $|S(G,G')| \geq 1.849f(n)$
Multiple Edges added: $|S(G,G')| \geq 1.849f(n)$

$F = \text{Moon Moser Graph on } (n - s) \text{ vertices}$
Multiple Edges added: \(|S(G,G')| \geq 1.849f(n)\)

Suppose \(s\) vertices in “circumference”
\(f(n-s)\) maximal cliques in center
\(f(s)\) maximal cliques in circumference

- Total new maximal cliques = \(f(s) \cdot f(n-s)\)
- Total subsumed maximal cliques is \(s \cdot f(n-s)\)
- Total Change = \((s+f(s)) \cdot f(n-s)\)

Maximize over all \(s\) to arrive at
1.849 \(f(n)\)
Multiple Edges $E' = \{e_1, e_2, ..., e_k\}$ added:
Enumerate Change

• Obs 1: Each new clique must contain an edge from E'. Further, any maximal clique that contains an edge from E' is new.
 • To find new cliques, find all maximal cliques that have one or more edges from E'

• Obs 2: Each subsumed clique must contain a vertex incident to E', and must be subsumed by one of the new cliques
Multiple Edges $E' = \{e_1, e_2, \ldots, e_k\}$ added: Find New Cliques

Plan: Find all maximal cliques that have one or more edges from E'

Suppose edges of E' are ordered $\{e_1, e_2, \ldots, e_k\}$

1. $G' = G + E'$
2. For each e in E'
 - Enumerate all cliques in G' containing e
 - Output a clique c if e is the lowest edge in c among E'

Good: The algorithm is still change sensitive

Bad: Each new clique is enumerated multiple times, once for every edge that it contains from E'
Find New Cliques: Better Algorithm that Avoids Enumerating Duplicate Cliques

Based on the Algorithm of Tomita et al.

• Uses Branch and Bound
• Consider edges in order $e_1, e_2, e_3, ..., e_k$
• When considering e_i, enumerate only those maximal cliques that exclude edges $e_1, e_2, ..., e_{i-1}$
Find NewCliques with Multiple Edge Addition: Resource Usage

• Space: As large as the size of the graph

• Time:
 • Possible to get time proportional to the set of new maximal cliques (using Tsukiyama et al.), with high multiplicative factors
 • Tomita et al. based algorithm is faster, but does not have above theoretical property

• For the first time, we are able to prove that time of enumeration is proportional to magnitude of change
Multiple edges E' added to G: Find Subsumed Cliques

• Strategy: For each new clique c that is found, find all cliques that have been subsumed by c

• Q: Given a newly emerged clique C, which old maximal cliques have been subsumed by C?
 • Find all maximal cliques in $C - E'$
 • Test each one for maximality within G, and output if found to be maximal
Multiple edges E' added to G: Find Subsumed Cliques – Resource Usage

• Space: High, if it is necessary to avoid duplicates

• Time: Change-Sensitive with a constant exponential in $|E'|$
 • The number of maximal cliques that need to be checked for each emerging clique can be exponential in $|E'|$
 • A clique may be examined, but turn out to not be maximal in G
Summary of Results on Dynamic Maximal Clique Maintenance

<table>
<thead>
<tr>
<th>Magnitude of Change</th>
<th>Enumerate New Cliques</th>
<th>Enumerate Subsumed Cliques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a Single Edge</td>
<td>3 (f(n-2))</td>
<td>Change-Sensitive Algorithm</td>
</tr>
<tr>
<td>Add Small Number of Edges</td>
<td>1.849 (f(n) \leq \text{Max} \leq 2f(n))</td>
<td>Change-Sensitive Algorithm</td>
</tr>
<tr>
<td>Add Large Number of Edges</td>
<td>Change-Sensitive Algorithm</td>
<td>??</td>
</tr>
</tbody>
</table>

\[1.849 \leq \text{Max} \leq 2f(n) \]
Experimental Results: Datasets Used

<table>
<thead>
<tr>
<th>Graph Name</th>
<th>Type Of Graph</th>
<th># of edges</th>
<th># of vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2p-Gnutella</td>
<td>Social Networks</td>
<td>147,892</td>
<td>62,586</td>
</tr>
<tr>
<td>wikivote</td>
<td>Wikipedia Voting Network</td>
<td>103,689</td>
<td>7,115</td>
</tr>
<tr>
<td>email-Enron</td>
<td>Communication Networks</td>
<td>367,662</td>
<td>36,692</td>
</tr>
</tbody>
</table>
Algorithms Compared

- Maximal Clique Algorithm (Our algorithm)

- Ottosen and Vomlel “Honor Thy Neighbor – Clique Maintenance in Dynamic Graphs”, 2010

- Stix, “Finding All Cliques in Dynamic Graphs”, 2004
 - Took more than two hours for each data set used, hence not shown
of Edges vs Time (wikivote)
of Edges vs Time (email_Enron)
of Edges vs Time (p2p-Gnutella)
Conclusion

• Systematic Exploration of Maximal Clique Maintenance in Dynamic Graphs

• Orders of magnitude speedup compared to prior work

• Open Questions
 • Tight Bounds for magnitude of Change
 • Better Method for Enumerating Subsumed Cliques
 • More Usable Characterization of Subsumed Cliques
Conclusion: Future Work

• Impose a model on the graph arrival, make use of this model
• Scaling to Very Large Graphs, Sublinear space
• Parallel Processing
• Other Dense Substructures
 • Maximal Bicliques
 • Enumerate Emergence of Only Large Structures
 • Tracking of Incomplete but Dense Structures
 • …
• Scope of Data – Sliding Window, etc