PHISH framework for Streaming Graph Algorithms

Steve Plimpton
Sandia National Labs

CERI/DIMACS Workshop on Streaming Graph Algorithms
Oct 2014 - Sandia

Collaborators: Tim Shead, Jon Berry, Cindy Phillips,
Todd Plantenga, Karl Anderson

Sandia Sandla Natlonal Laboratories is a muln i-program laboratory managed and operated by Sandia V'Y A2 og&q)
National a wholly owned y of Lockheed Martin Corporation, for the U.S. Department of VAT 3
Laboratories Energy s National Nuclear Security Administration under confract DE-AC04-04AL85000. ' encobilommomar, o

PHISH is a simple library for stream processing

o Parallel Harness for Informatic Stream Hashing
@ phish swim in a stream

@ Open source, BSD license
http://www.sandia.gov/wsjplimp/phish.htmI

PHISH is a simple library for stream processing

o Parallel Harness for Informatic Stream Hashing
@ phish swim in a stream

@ Open source, BSD license
http://www.sandia.gov/~sjplimp/phish.html

o Commercial: IBM InfoSphere, Esper, SQLstream
@ Open source: Twitter Storm, S4 (Yahoo!)
@ Other ?

PHISH pheatures

Based on pipeline model:

datums flow thru compute processes (not threads)
move datums between processes via message passing
multiple processes work together to perform analysis
split stream to enable parallelism & store more state

Lightweight, portable C library

Message passing via MPI or sockets (zeroMQ)

Write compute kernels in C, C++, Fortran, Python, ...
No HDFS (parallel file system with data redundancy)
No fault-tolerance (blame it on MPI)

PHISH pheatures

Based on pipeline model:

datums flow thru compute processes (not threads)
move datums between processes via message passing
multiple processes work together to perform analysis
split stream to enable parallelism & store more state

Lightweight, portable C library

Message passing via MPI or sockets (zeroMQ)

Write compute kernels in C, C++, Fortran, Python, ...
No HDFS (parallel file system with data redundancy)
No fault-tolerance (blame it on MPI)

PHISH lingo:

minnow = stand-alone program, link to PHISH lib
school = set of identical minnows (for parallelism)
hook = connection between 2 schools

PHISH net(work) = multiple schools, hooked together
PHISH tales = the manual

PHISH net for traditional MapReduce

snapshots
P

_

files _—

Map Reduce
IDs

—

%’3

£ %

E

=

> (Statsg) —

/

@ Scatter & analyze minnow schools for parallelism

@ Convert data from per-snapshot to per-particle

@ Enables trajectory analysis of individual particles

PHISH script for traditional MapReduce

minnow m scatter filel.dump file2.dump ...
minnow r analyze -dist 3.0
minnow s stats 10000

hook m hashed r
hook r single s

school m 16
school r 16
school s 1 invoke python

@ Input script = bait.py = mpiexec or shell-script

PHISH net for streaming MapReduce

Map Reduce
snapshots IDs
- | Gy
— AN
s:umnur;;r:i‘?an - . — _'
D

7
S~

@ Streaming version:

e snapshot data processed on-the-fly
e user interaction & simulation “steering”

@ MapReduce is now fine-grained and continuous

Parallel streaming graph algorithms using PHISH

@ Sub-graph isomorphism
@ Triangle enumeration

©® Connected components

@ All 3 algorithms store entire graph (in distributed memory)
@ SGI and TriEnum are incremental, not true streaming

e CC is constant-time, can keep-up with a stream rate

Sub-graph isomorphism

Data mining, needle-in-haystack anomaly search
Huge semantic graph with colored vertices, edges (labels)

SGI = find all occurrences of small target graph

Shared-memory algorithm by J Berry, MR with T Plantenga

—>

/

Streaming sub-graph isomorphism

real-tim
RMAT,
or files

- matches

£ 3 (Stats) —

X

\/
N

W\
0 e

Each edge stored twice, once by each vertex

SGI minnows generate walk 1 step at time = N iterations
Individual walks dropped if constraint not met

140 lines of Python!

Streaming triangle enumeration

edges

real—tim;I
RMAT,
or files

—> triangles
: —
A

AN

edges

wedges

Streaming version of J Cohen, CS&E, 11, 29-41 (2009)
Owners of (1,J) vertices exchange degree/neighbor info
Low-degree vertex does neighbor send

Nth new edge triggers N-1 wedge messages

90 lines of Python

Streaming connected components

Work with C Phillips & J Berry

Details from Cindy tomorrow

real-time,|

RMAT,
or files

Proc 0 oncr1

A B A B \c
(v2,v4) ®vn) |/ N\ | cvn
— — I g
S S/

Graph stored hierarchically
edges once, vertices duplicated

Embed queries in stream of edges
e are Vj and V; in same CC
o what are components of size < N
and age < A

PHISH supports mixing, ring,
permutation, aging

Throughput benchmark with PHISH

@ Send zero-length datums along linear chain of processors

5

—»— MPIl-only
1 —©—MPI
1 —8-Py/MPI
1 ——2zMQ
{ —6—-Py/ZMQ

—_
e
|

Rate (millions of datums/sec)

| | | |
2 4 8 16 32 64 128256
Chain length (processors)

o
o

@ Send 1K-length datums at 400K /sec (bandwith limited)

Hashed all-to-all benchmark with PHISH

@ Send zero-length datums from P /2 procs to P/2 procs

200 T T T
100
ey r
[0}
©
2]
€
=2
g 108
b F
0
c
9
E 1F
© E
T
o
1 I 1 1 1 1 | | 1
0 2 4 8 16 64 256
Processors

—— MPl-only

i —e-MPI

1 —8 Py/MPI

1 ——2zZMQ
—5—Py/ZMQ

@ Roll-over due to using multiple cores/node
@ 147M datums/sec on 1024 procs (1 core/node)

FireHose benchmarks via PHISH

FireHose benchmarks via PHISH

@ Optimized C versions of anomaly detection kernels
@ Parallelism via hashing to split stream across processes

\ | GormD

KeyHas Anomal
(Generator] | » | (ReadUDP) | -7 y

O* | (KeyHas (Anomaly)
4 \ Pl
KeyHas

serial PHISH = 1/0/1 processes, parallel PHISH = 1/4/2 processes

FireHose benchmark results

@ Dell box: dual hex-core 3.47 GHz Intel Xeons (X5690)
@ Maximum stream rates with no dropped packets
o #1 = fixed, #2 = unbounded, #3 = two-level keys

Implementation ‘ Bench H # Gen ‘ Rate (M/sec) ‘ LOC ‘

C++ 2 5.6 275
Python #1 1 0.45 190
PHISH (serial) 2 5.5 390
PHISH (parallel) 4 10.0 525
C++ 1 1.9 415
Python #2 1 0.14 290
PHISH (serial) 1 1.9 525
PHISH (parallel) 2 3.4 665
C++ #3 1 1.5 495

Thanks & links & papers

Open-source packages (BSD license):

e http://www.sandia.gov/~sjplimp/phish.html (PHISH)
e http://mapreduce.sandia.gov (MapReduce on top of MPI)
@ http://firehose.sandia.gov (FireHose - soon)
Papers:
@ Plimpton & Shead, “Streaming data analytics via message

passing with application to graph algorithms”, JPDC, 74,
2687 (2014).

e Plantenga, “Inexact subgraph isomorphism in MapReduce”,
JPDC, 73, 164 (2013).

o Berry, et al, “Maintaining CC for infinite graph streams”,
BigMine '13, 95 (2013).

@ Plimpton & Devine, “MapReduce in MPI for large-scale graph
algorithms”, Parallel Computing, 37, 610 (2011).

