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~~_Understanding large graphs

e Start with the simple,
static problem

e | getalarge graph from
some <INSERT NAME>
application

* “You're a graph expert.
Tell us something about
this graph.”
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Things to measure

Actor

Decade of network
science research gives
enough leads

Degree distributions
Clustering coefficients
Eigenvalues of matrix
Hop-plots

Core decompositions
Community structure

CoIIaboratlon WWW
| 10° W - ]
| . B
‘ L} '
| 2
10 Y
} [
| \‘
L0t | Y
|
=" 10°F
-8 f \
0 ‘I l2 3 10 ‘0 ‘\ 2 3 = 4
10 10 10 10 10° 10" 10° 10° 10

A.-L. Barabasi and R. Albert. Emergence of scaling

in random networks. Science, 1999.

Clusteting Coefficient




f ()
- ; v‘ > Laboratories
Mwe “know” the space of rggl ne_t,WQrks

Heavy-tailed graphs

Social networks

Universe of
all sparse graphs

* Social/biological/communication networks are
contained in a “tiny slice” of all graphs

By no means a solved problem, but we have a good
sense of what this slice is

* Nice collection of properties across domains:
degree distributions, triangles, cores, etc.
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Measurements help

* Having measurements makes the modeling
discussion sane

* Let me give you a demonstration
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Measurements to inference

Random graph:

(1) Formed according to CL Model CLiode! X
(2) “High” clustering coefficient G = (V,E) {di}icv (prescribed)

\U/ Prob ((¢,7) € E | i,j,€ V) < d; - d;
Thm: Must contain a “substantive” subgraph Global Clustering Coefficient
that is a dense Erd6s-Rényi graph. __ 3 X # triangles in graph

\U, ¢ = # wedges in graph
A heavy-tailed network with a high clustering Dense ErdGs-Rényi Subgraph
coefficient contains many Erd6s-Rényi affinity ‘7 cV E c E

2

blocks. (The distribution of the block sizes is also

heavy tailed.) Prob ((ZJ) ckE | 3,7 € V) o constant

Seshadhri, Kolda, Pinar, Phys. Rev. E 2012
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Some modeling ability
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 Far from solved, but models are reasonable

* [Kolda et al 14] And we can scale these models to
get decent synthetic graphs

* At the very least, not hard to generate some test
cases (ER, CL, SKG, ForestFire, Hyperbolic, etc.)




But what about a graph stream?

NUONIONININININTN

 Time: a complete new dimension to worry about

e Standard approach is to just aggregate over
windows

* [Macskassy 14] “Mining dynamic networks: The

importance of pre-processing on downstream
analytics”

— The choice of time window affects results



Temporal degree distributions

NUONIONININININTN

Actor
Collaboration

* Degree distribution is
not one object any more -

* Degrees vary over time

— Is there some pattern that is relevant across
domains?

— How to represent information?

* [Shmueil et al 14] Degrees in social trading
network over time



Time in subgraphs

NUONINININININTN

* A subgraph is a temporal object
* Are there any trends/patterns over time?



Measures for temporal graphs

NUONINININININTN

* Area is wide wide open

* Few scattered results, but nothing compelling

* Lack of good datasets...?



Now for an actual result

NUONINININININTN

* Not directly related to the measurement
problem

e But nice (?) story on how thinking about
streaming algorithms could lead to ideas

— Result with Madhav Jha and Ali Pinar (2014)
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\ Triangle information () .

E-F-G is an open wedge

B-C-D is a closed wedge

W =no. of wedges (paths of length 2)

— “Center” of wedge is middle vertex
* T=no. of triangles
* Transitivity = T = 3T/W = fraction of closed wedges

Wedge Sampling: Sample a few wedges (uniformly). Check if each is closed.
T =# closed sampled wedges / # sampled wedges




Sandia
National
Laboratories

Streaming Triangle Counting
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Limited

Memory
Triangles so far: 4 = Data streams important for
Graph seen so far: situational awareness

= Streaming algorithms also
useful for large data sets

= Algorithmically
= See each edge only once

= Either take action or lose that
piece of information forever
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Real-world messiness

NUONINIONINININ

= Real-world streams are multigraphs: edges can be repeated

= Consider communication network. Obvious repeats

= Thereis no true “graph”. It depends on how you aggregate

= Different time intervals give different graphs

Standard approaches

= There are no repeats. Assume graph is simple
= Aggregate every edge seen. The “window” is all of history
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Drawbacks of ignoring repeats

RNRANANAN NN NN

= Assumptions useful for algorithmic progress, but avoids real-
world complexities

= Algorithms cannot be deployed in “wild”

= Removing repeated edges requires extra pass over edges
= Assumption of no repeats is expensive to enforce

= Not clear how to store information of various time-windows
simultaneously
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Our result

RNRANANAN NN NN

= Algorithm for approximating triangle counts and transitivity of
underlying simple graph
= No preprocessing. Works with raw stream

= Maintain information on multiple time windows with same data
structures

= Provable bounds on accuracy, excellent empirical behavior

= Based on [Jha-S-Pinar 13] approach, but needs new ideas to
debias counts
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Past art

RNRANANAN NN NN

= Much work on triangle counting in data streams
" Good theory and empirical behavior

= [Jha-S-Pinar 13], [Pavan-Tangwongsan-Tirthapura-Wu 13],
[Ahmed-Duffield-Neville-Kompella 14]

= Work on idealized stream with no repeats, and only aggregate
all of history
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Just to make my point...

1e7 Previous algorithms on simple graph DBLP

* Pavan et al
+ Ahmed et al
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1e7 Previous algorithms on multigraph DBLP
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Case study: DBLP graph

2007 2008 2009 2010 2011 2012

. B

= DBLP co-authorship graph: all paper records over 50 years gives
graph stream
= Naturally repeated edges. Colleagues work together for many papers
= Sjze = 3600K, non-repeated edges = 254K
= For graph G[t:t+At], there is associated transitivity and triangle
count
= How does this vary with t and At?
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Triangle trends in DBLP graph

2002 2003 2004 2005 2006 2008 2009 2010 2011 2012
DBLP coauthorship network % 10° DBLP coauthorship network
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= Stream size = 3600K, non-repeated edges = 254K

= Results obtained with storing 30K edges
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Triangle trends in Enron graph

Enron email network
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X 10° Erron email network
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" Enron email network: stream size 1100K, non-repeated 300K

= Storage used = 8K
"= Trends “opposite” to DBLP graph

2
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lgnoring triangles from single paper

DBLP transitivity - allow vs disallow
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* Natural question for affiliation network like

DBLP
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Algorithm Sketch

Edge stream

Hashing based
sampling
(add if h(e) < a)
Edge pool \ \ '\. \ \- \-
Hash sampling again
(add if h(w) < B)
V

Wedge pool V V V V V

» 1 10]0|1(f1]0O0 Part of triangle?
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Streaming Algorithm Features

* Only two parameters a, 3 DBLP o 19822012
— No knowledge of graph 03| [A\,W e
required 025 cotmate ||

02t True

* Provable guarantee on
expectation

— Provable variance bound
(though not useful in o
practlce) 0 05 1 S;:ce 2 25 3

x10°

015+

Transitivity

01

0.05¢

* Space around 1% of total
stream

* Accuracy always within
5%
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~Time should be included in graph (i) i
analysis

* We need
— Metrics for temporal structure Q
— Data to try things out

— Algorithms to compute these
metrics efficiently

— Domain expertise to guide us

e What is normal, what is
abnormal?

* Generating realistic data?

* Back to the beginning: Could
give insight into the right things
to measure...?




