Graph Stream Algorithms: A Survey

Andrew McGregor
University of Massachusetts Amherst

Graph Stream Model

Graph Stream Model

® |nput: Sequence of edges (e|, ez ...) defines n-node graph G.

Graph Stream Model

® |nput: Sequence of edges (e|, ez ...) defines n-node graph G.

QO O 0O
QO O 0O

QO O 0O

Graph Stream Model

® |nput: Sequence of edges (e|, ez ...) defines n-node graph G.

Graph Stream Model

® |nput: Sequence of edges (e|, ez ...) defines n-node graph G.

® Goal: Compute properties of G without storing entire graph.

Graph Stream Model

® |nput: Sequence of edges (e|, ez ...) defines n-node graph G.

® Goal: Compute properties of G without storing entire graph.

® Computational constraints:

i) Limited working memory, e.g., O(n) rather than O(m)

Graph Stream Model

® |nput: Sequence of edges (e|, ez ...) defines n-node graph G.

® Goal: Compute properties of G without storing entire graph.

® Computational constraints:

i) Limited working memory, e.g., O(n) rather than O(m)
ii) Access data sequentially

Graph Stream Model

® |nput: Sequence of edges (e|, ez ...) defines n-node graph G.

® Goal: Compute properties of G without storing entire graph.

® Computational constraints:

i) Limited working memory, e.g., O(n) rather than O(m)
ii) Access data sequentially
iii) Process each element quickly

Com/%(faf/ona/

Graph Stream Model

® |nput: Sequence of edges (e|, ez ...) defines n-node graph G.

® Goal: Compute properties of G without storing entire graph.

® Computational constraints:

i) Limited working memory, e.g., O(n) rather than O(m)
ii) Access data sequentially
iii) Process each element quickly

Motivation

Motivation

® T[raditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

Motivation

® T[raditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

Interesting theoretical questions: How can we summarize graphs!?
Is there a notion of dimensionality reduction? What types of
sampling is possible? Connections to compressed sensing,
communication complexity, approximation, embeddings, ...

Motivation

® T[raditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

Interesting theoretical questions: How can we summarize graphs!?
Is there a notion of dimensionality reduction? What types of
sampling is possible? Connections to compressed sensing,
communication complexity, approximation, embeddings, ...

® Jechniques have wider applications: E.g., distributed settings,

Motivation

® T[raditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

Interesting theoretical questions: How can we summarize graphs!?
Is there a notion of dimensionality reduction? VWhat types of
sampling is possible? Connections to compressed sensing,
communication complexity, approximation, embeddings, ...

® TJechniques have wider applications: E.g., distributed settings,

Motivation

® T[raditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

Interesting theoretical questions: How can we summarize graphs!?
Is there a notion of dimensionality reduction? VWhat types of
sampling is possible? Connections to compressed sensing,
communication complexity, approximation, embeddings, ...

® TJechniques have wider applications: E.g., distributed settings,

»
Each machine runs stream

algorithm locally and sends state
of their algorithm.

Qutline

Qutline

® This Ialk:

® Algorithms: Summarizing and computing on graph streams
® Extensions: Sliding windows, extra passes, annotations etc.

® Future Directions: Directed edges, ordering, stochastic graphs

Qutline

® This Ialk:

® Algorithms: Summarizing and computing on graph streams
® Extensions: Sliding windows, extra passes, annotations etc.

® Future Directions: Directed edges, ordering, stochastic graphs

® Accompanying Survey:

® |ncludes all references and further details.

® [eedback welcome...

\
http://people.cs.umass.edu/~mcgregor/papers/ | 3-graphsurvey.pdf

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

1. Algorithms

2. Extensions

3. Directions

1. Algorithms

2. Extensions

3. Directions

Sparsifiers & Cuts

Sparsifiers & Cuts

Original Graph G

® Sparsifiers: A subgraph H is a (1+¢) sparsifier for G if the
total weight of any cut is preserved up to a factor |+¢.

Sparsifiers & Cuts

Diagram courtesy of Nick Harvey

Original Graph G Sparsifier Graph H

® Sparsifiers: A subgraph H is a (1+¢) sparsifier for G if the
total weight of any cut is preserved up to a factor |+¢.

Sparsifiers & Cuts

Original Graph G Sparsifier Graph H

Sparsifiers: A subgraph H is a (1 +¢€) sparsifier for G if the
total weight of any cut is preserved up to a factor |+¢.

Thm: For any graph G there exists a (|+¢) sparsifier
with only O(g2n) edges. Can be constructed efficiently.

>N
(]
>
(-
("]
I
~
9
Z
o
(o)
>N
%)
(0]
)
o
3
@]
(9]
E
«
[,
[oY0]
o
a)

>N
(]
>
[
(]
I
X
R
s
Y—
o
>
(%)
0]
)
o
>
o
O]
£
«
[
0o
o
@]

Original Graph G Sparsifier Graph H

Sparsifiers: A subgraph H is a (1 +¢€) sparsifier for G if the
total weight of any cut is preserved up to a factor |+¢.

Thm: For any graph G there exists a (|+¢) sparsifier
with only O(&2n) edges. Can be constructed efficiently.

Thm: Can construct a (|+g)-sparsifier of a graph stream
using O(g2n polylog n) bits of space.

Sparsifier Algorithm

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E|

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

[&]

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

[T

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

B] &

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

Es3

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E4

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

Es;UE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

Es;UE4

/ \

E

Es

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4

/ \

E

3

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4

/ \

E

B] E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4 EsUEs

T

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

Eiu..UE4

E3uE4

/ \

E

B] E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4

/ \

E E;

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

Eiu..UE4

E3uE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

Eiu..UE4

E3uE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

ot
5 | &6 | & | & [6 &

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E3uE4

/ \

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsUE4 EsuEs E7uEs
/ \ / \ / \
3 E4 7 Es

Es Ee E

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E|U..UE3

EsUE4 EsuEs E7uEs
/ \ / \ / \
g E4 7 Es

Es Ee E

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

EsuE4 EsUEs
/ \ \ / \
3 E4 7 Es

E

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

N N

E3UE4 EsuEs EsUEs
/ \ / \ / \
g E4 7 Es

Es Ee E

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

N N

E3UE4 E7UEs
/ \ \ / \
g E4 7 Es

E

E

® Algorithm: Recursively re-sparsify using any “offline” algorithm.

® Analysis: Let d=O(log n) be depth of the tree. Error of a final cut
estimate is (1+¢€)9 and we only store d sparsifiers simultaneously.

Sparsifier Algorithm

N N

E3UE4 E7UEs
/ \ \ / \
g E4 7 Es

E

E

Algorithm: Recursively re-sparsify using any “offline” algorithm.

Analysis: Let d=O(log n) be depth of the tree. Error of a final cut
estimate is (1+¢€)9 and we only store d sparsifiers simultaneously.

Results extend to constructing spectral sparsifiers.

Spanners & Distances

Spanners & Distances

Original Graph G

® Spanner: A subgraph H is a k-spanner for G if all graph
distances are preserved up to a factor k.

Spanners & Distances

Original Graph G Spanner Graph H

® Spanner: A subgraph H is a k-spanner for G if all graph
distances are preserved up to a factor k.

Spanners & Distances

Original Graph G Spanner Graph H

Spanner: A subgraph H is a k-spanner for G if all graph
distances are preserved up to a factor k.

® Thm:There is a O(n'*!t) space stream algorithm that
constructs a (2t-1)-spanner.

Spanners Algorithm

Spanners Algorithm
0 @)
)
©)

Spanners Algorithm
0 @)
)
©)

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm
@)
)

Q @ O

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm
0 @)

0 @ ©

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

® |emma: All distances preserved up to a factor 2t-|

because an edge (u,v) was only ignored if there was
already a path of length at most 2t-| between u and v.

Spanners Algorithm

® Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

Lemma: All distances preserved up to a factor 2t-|
because an edge (u,v) was only ignored if there was
already a path of length at most 2t-| between u and v.

Lemma: At most (n'*"t) edges stored since shortest
cycle among stored edges has length at least 2t+1.

Other Algorithms

Other Algorithms

® Matchings: See Sudipto’s talk...

» Goal: Find large set of disjoint edges.

» Results: O(n)-space algorithms 2-approx. (unweighted) and
4-approx. (weighted). Can do better if edges are grouped
together by end-point or arrive in random order.

» Extensions: O(Il) approx. for various sub-modular problems.

Other Algorithms

® Matchings: See Sudipto’s talk...

» Goal: Find large set of disjoint edges.

» Results: O(n)-space algorithms 2-approx. (unweighted) and
4-approx. (weighted). Can do better if edges are grouped
together by end-point or arrive in random order.

» Extensions: O(Il) approx. for various sub-modular problems.

® Counting Triangles: Estimate the number of triangles (or small
cycle or clique etc.). See Srikanta’s talk...

Other Algorithms

® Matchings: See Sudipto’s talk...

» Goal: Find large set of disjoint edges.

» Results: O(n)-space algorithms 2-approx. (unweighted) and
4-approx. (weighted). Can do better if edges are grouped
together by end-point or arrive in random order.

» Extensions: O(Il) approx. for various sub-modular problems.

® Counting Triangles: Estimate the number of triangles (or small
cycle or clique etc.). See Srikanta’s talk...

® Random Walks: Simulate length t random walks in +/t passes.

Other Algorithms

Matchings: See Sudipto’s talk...

» Goal: Find large set of disjoint edges.

» Results: O(n)-space algorithms 2-approx. (unweighted) and
4-approx. (weighted). Can do better if edges are grouped
together by end-point or arrive in random order.

» Extensions: O(Il) approx. for various sub-modular problems.

Counting Triangles: Estimate the number of triangles (or small
cycle or clique etc.). See Srikanta’s talk...

Random Walks: Simulate length t random walks in +/t passes.

Other: Minimum spanning trees, bipartiteness, finding dense
components, correlation clustering, independent sets, etc.

1. Algorithms

2. Extensions

3. Directions

1. Algorithms

2. Extensions

3. Directions

Extensions of Model

Extensions of Model

® Sliding Window: Infinite stream but only consider graph defined
by recent w edges. Can solve most aforementioned problems.

Extensions of Model

® Sliding Window: Infinite stream but only consider graph defined
by recent w edges. Can solve most aforementioned problems.

® Multiple Passes: What’s possible with a small number of stream
passes! E.g., can find |+& approx. matching in O(g) passes.

Extensions of Model

® Sliding Window: Infinite stream but only consider graph defined
by recent w edges. Can solve most aforementioned problems.

® Multiple Passes: What’s possible with a small number of stream
passes! E.g., can find |+& approx. matching in O(g) passes.

® Annotated Streams: Suppose a third party “annotates” the
stream to assist with the computation. Can we reduce
required memory while still verifying correctness.

Extensions of Model

® Sliding Window: Infinite stream but only consider graph defined
by recent w edges. Can solve most aforementioned problems.

® Multiple Passes: What’s possible with a small number of stream
passes! E.g., can find |+& approx. matching in O(g) passes.

® Annotated Streams: Suppose a third party “annotates” the
stream to assist with the computation. Can we reduce
required memory while still verifying correctness.

STREAM

Extensions of Model

® Sliding Window: Infinite stream but only consider graph defined
by recent w edges. Can solve most aforementioned problems.

® Multiple Passes: What’s possible with a small number of stream
passes! E.g., can find |+& approx. matching in O(g) passes.

® Annotated Streams: Suppose a third party “annotates” the
stream to assist with the computation. Can we reduce
required memory while still verifying correctness.

STREAM

Dynamic Graphs

Dynamic Graphs

® Dynamic Graph Streams: Suppose the stream consists of edges

both being added and removed from the underlying graph.

® (Can we maintain a uniform edge sample in small space?

4

Challenge: The sampled edge we have remembered so far
may be deleted at the next step.

Result: Can maintain uniform sample in O(polylog n) space
via a technique called “lo sampling”.

Dynamic Graphs

® Dynamic Graph Streams: Suppose the stream consists of edges
both being added and removed from the underlying graph.

® (Can we maintain a uniform edge sample in small space?

» Challenge:The sampled edge we have remembered so far
may be deleted at the next step.

Result: Can maintain uniform sample in O(polylog n) space
via a technique called “lo sampling”.

® More powerful sampling techniques:

» In O(n polylog n) space, can construct a data structure that
returns a random edge across any queried cut.

» In O(n polylog n) space, can sample edges where (u,v) is
sampled w/p inversely proportional to size of min u-v cut.

Distributed Graph Data

Distributed Graph Data

;
L\ ; . | ’ :
1 [X N ' ¥
S y . ‘.

Distributed Graph Data

® Setting: The rows of an adjacency matrix are partitioned
between different machines. Equivalently, consider n players
each of whom has an “address book” listing their friends.

Distributed Graph Data

® Setting: The rows of an adjacency matrix are partitioned
between different machines. Equivalently, consider n players
each of whom has an “address book” listing their friends.

Goal: Each player sends a “short” message to a third party
who then determines if underlying graph is connected.

Distributed Graph Data

A\
s | \

® Appears that some messages need to be Q(n) bits: If there’s a
bridge (u,v) in the graph, one of the friends needs to mention
this friendship but neither friend knows it’s a bridge.

LN

Distributed Graph Data

® Appears that some messages need to be Q(n) bits: If there’s a

bridge (u,v) in the graph, one of the friends needs to mention
this friendship but neither friend knows it’s a bridge.

® Thm: O(polylog n) bit messages suffice!

Distributed Graph Data

7 = N— \ \ \§y

.,(

® Appears that some messages need to be Q(n) bits: If there’s a
bridge (u,v) in the graph, one of the friends needs to mention
this friendship but neither friend knows it’s a bridge.

® Thm: O(polylog n) bit messages suffice!

» With a small increase of size, can allow third-party to
estimate all cut sizes and spectral properties of the graph!

» Protocol is based on “cut sampling” primitive where third
party can deduce some edge across any cut w/p |-l/poly(n)

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector a.

{1,L2} {13} {14} {1,5} {23} {24} {2,5} {3.4} {3.5} {45}

ay=(1 1 @#0 0 @ OF I0=0N 0

b
0
o ¢

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector a.

{1,2 {1,3} {1,4} {1,5} {2,3} {24} {2,5} {3,4} {3,5} {45}
ay=(1 1 @#0 0 @ OF I0=0N 0

ap =<1 0080 < [ACE0V GG) °/| |
N
0—0

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector ai.

{1,2 {1,3} {1,4} {1,5} {2,3} {24} {2,5} {3,4} {3,5} {45}
ay=(1 1 @#0 0 @ OF I0=0N

ay =/ <1 0. 080 T B0 0

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector ai.
{1,L2} {13} {14} {1,5} {23} {24} {2,5} {3.4} {3.5} {45}

{11 0=0"0 U Drid 0 0¥
(<1 0. 080 1eAEEDIE) O
= (4Bp1 «OFBBE 000 0 0

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector ai.
{1,L2} {13} {14} {1,5} {23} {24} {2,5} {3.4} {3.5} {45}

ay=(1 1 @#0 0 @ OF I0=0N 0
ay =/ <1 0. 080 T B0 0
a1 + ay =[Pl «OFBREY 0 N0 0 0)

@ Lemma: For any subset of nodes ScV,

support (» a;) = E(S,V\ S)

IS

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector a.
{1,L2} {13} {14} {1,5} {23} {24} {2,5} {3.4} {3.5} {45}

ay=(1 1 @#0 0 @ OF I0=0N 0
ay =/ <1 0. 080 T B0 0
a1 + ay =[Pl «OFBREY 0 N0 0 0)

@ Lemma: For any subset of nodes ScV,

support (» a;) = E(S,V\ S)
€S
® Second: Send Ma; where M is random projection
to RroleeN such that for any a, we can infer non-

zero entry of a from Ma. [Jowhari, Saglam, Tardos 2011]

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector a.
{1,L2} {13} {14} {1,5} {23} {24} {2,5} {3.4} {3.5} {45}

ay=(1 1 @#0 0 @ OF I0=0N 0
ay =/ <1 0. 080 T B0 0
a1 + ay =[Pl «OFBREY 0 N0 0 0)

@ Lemma: For any subset of nodes ScV,
support (» a;) = E(S,V\ S)
IS
® Second: Send Ma; where M is random projection
to RroleeN such that for any a, we can infer non-
zero entry of a from Ma. [Jowhari, Saglam, Tardos 2011]

@ To get incident edge on component ScV use:

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector ai.
{1,L2} {13} {14} {1,5} {23} {24} {2,5} {3.4} {3.5} {45}

ay=(1 1 @#0 0 @ OF I0=0N 0
ay =/ <1 0. 080 T B0 0
a1 + ay = (Bl “OHBBE Q00 0 09

@ Lemma: For any subset of nodes ScV,

support (» a;) = E(S,V\ S)
€S
® Second: Send Ma; where M is random projection
to RroleeN such that for any a, we can infer non-

zero entry of a from Ma. [Jowhari, Saglam, Tardos 2011]
@ To get incident edge on component ScV use:

Z VETES M(Z a;)

JES jeS

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector ai.
{1,L2} {13} {14} {1,5} {23} {24} {2,5} {3.4} {3.5} {45}

ay=(1 1 @#0 0 @ OF I0=0N 0
ay =/ <1 0. 080 T B0 0
a1 + ay = (Bl “OHBBE Q00 0 09

@ Lemma: For any subset of nodes ScV,

support (» a;) = E(S,V\ S)
€S
® Second: Send Ma; where M is random projection
to RroleeN such that for any a, we can infer non-

zero entry of a from Ma. [Jowhari, Saglam, Tardos 2011]

@ To get incident edge on component ScV use:

Z VETE M(Z Al gic support(z a;)

JES jES jES

Basic Idea: Cut Sampling

@ First: Encode neighborhoods of i as vector ai.

{1,L2} {13} {14} {1,5} {23} {24} {2,5} {3.4} {3.5} {45}
(11 @wo 0 @ OF a0y

<1 0. 080 T SRR 0 0)
(4Pl »OFBBEY 0 0807 0 04)

a1
dy —

a; + ar

H — |

@ Lemma: For any subset of nodes ScV,

support (» a;) = E(S,V\ S)
€S
® Second: Send Ma; where M is random projection
to RroleeN such that for any a, we can infer non-

zero entry of a from Ma. [Jowhari, Saglam, Tardos 2011]

@ To get incident edge on component ScV use:

Z Ma; = M(Z Al gic support(z @i E(5,V \5)

JES jES jES

1. Algorithms

2. Extensions

3. Directions

1. Algorithms

2. Extensions

3. Directions

Open Problems

Open Problems

! Many specific open questions:

® Approximate matching in O(n)-space with deletions?
® (Can we construct spanners of sliding window graphs!?

® |mprove approx. factors for matchings and triangles...

Open Problems

? Many specific open questions:

® Approximate matching in O(n)-space with deletions?
® (Can we construct spanners of sliding window graphs!?
® |mprove approx. factors for matchings and triangles...

? Open Problems Wiki: Large set of open problems in data
streams and property testing can be found at:

http://sublinear.info

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

Future Directions

Future Directions

? Directed Graphs: Almost all research to date has considered
undirected graphs but many natural graphs are directed. May
need multiple passes but O(log n) passes might be sufficient.

Future Directions

? Directed Graphs: Almost all research to date has considered
undirected graphs but many natural graphs are directed. May
need multiple passes but O(log n) passes might be sufficient.

Stream Ordering: Consider problems under different orderings,
e.g., grouped-by-endpoint, increasing weight, random order.

!

Future Directions

Directed Graphs: Almost all research to date has considered
undirected graphs but many natural graphs are directed. May
need multiple passes but O(log n) passes might be sufficient.

Stream Ordering: Consider problems under different orderings,
e.g., grouped-by-endpoint, increasing weight, random order.

More or Less Space: Most work has focus on O(n)-space
algorithms. Can we reduce space-complexity for specific
families of graphs? What’s possible with slightly more space!?

Future Directions

Directed Graphs: Almost all research to date has considered
undirected graphs but many natural graphs are directed. May
need multiple passes but O(log n) passes might be sufficient.

Stream Ordering: Consider problems under different orderings,
e.g., grouped-by-endpoint, increasing weight, random order.

More or Less Space: Most work has focus on O(n)-space
algorithms. Can we reduce space-complexity for specific
families of graphs? What’s possible with slightly more space!?

Explore deeper connections with distributed algorithms,
communication complexity, dynamic graphs data structures...

ummary of the Survey

Thanks!

Summary of the Survey

® Algorithms: Spanners and sparsifiers capture different
properties of the graph. Efficient constructions in streaming
model. Other positive results for matchings, triangles, etc.

Extensions: Many variants of the basic model including sliding
windows, multi-pass, edge deletions, annotations...

Directions: Improve existing results. Future directions include
directed graphs, stream ordering, specific graph families etc.

Thanks!

http://people.cs.umass.edu/~mcgregor/papers/ | 3-graphsurvey.pdf

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

Lower Bound for Connectivity

@ Alice and Bob have x,ye{0,1}". For Bob to check if
xi=yi=l for some i needs Q(n) communication.

Lower Bound for Connectivity

@ Alice and Bob have x,ye{0,1}". For Bob to check if
xi=yi=l for some i needs Q(n) communication.

@ Let A be an s space algorithm for connectivity.

Lower Bound for Connectivity

vLe @8-~ B8 80 80 6
ve @ @880 @ -l 6

@ Alice and Bob have x,ye{0,1}". For Bob to check if
xi=yi=l for some i needs Q(n) communication.

@ Let A be an s space algorithm for connectivity.
@ Consider 2-layer graph (U\V) with [U|=|V|=n

Lower Bound for Connectivity

vLe @8-~ B8 80 80 6
ve @ @880 @ -l 6

@ Alice and Bob have x,ye{0,1}". For Bob to check if
xi=yi=l for some i needs Q(n) communication.

@ Let A be an s space algorithm for connectivity.
@ Consider 2-layer graph (U\V) with [U|=|V|=n

@ Alice runs A on and Ex={uui,;1:xi=0}

Lower Bound for Connectivity
US—0. 00— 80 -0 ©
ve @ 0358 '8 -l 8

@ Alice and Bob have x,ye{0,1}". For Bob to check if
xi=yi=l for some i needs Q(n) communication.

@ Let A be an s space algorithm for connectivity.
@ Consider 2-layer graph (U\V) with [U|=|V|=n

@ Alice runs A on and Ex={uui,;1:xi=0}

Lower Bound for Connectivity
US—0. 00— 80 -0 ©
ve @ 0358 '8 -l 8

@ Alice and Bob have x,ye{0,1}". For Bob to check if
xi=yi=l for some i needs Q(n) communication.

@ Let A be an s space algorithm for connectivity.
@ Consider 2-layer graph (U\V) with [U|=|V|=n
@ Alice runs A on and Ex={uui,;1:xi=0}

@ Send memory to Bob who runs A on Es={vivi,;:yi=0}

Lower Bound for Connectivity
US—0. 00— 80 -0 ©
ve @ 0358 '8 -l 8

@ Alice and Bob have x,ye{0,1}". For Bob to check if
xi=yi=l for some i needs Q(n) communication.

@ Let A be an s space algorithm for connectivity.
@ Consider 2-layer graph (U\V) with [U|=|V|=n

@ Alice runs A on and Ex={uui,;1:xi=0}
@ Send memory to Bob who runs A on

@ Output of A resolves matrix question so s=Q(n).

Lower Bound for Connectivity
US—0. 00— 80 -0 ©
ve @800 8- e 8

@ Alice and Bob have x,ye{0,1}". For Bob to check if
xi=yi=l for some i needs Q(n) communication.

@ Let A be an s space algorithm for connectivity.
@ Consider 2-layer graph (U\V) with [U|=|V|=n

@ Alice runs A on and Ex={uui,;1:xi=0}
@ Send memory to Bob who runs A on

@ Output of A resolves matrix question so s=Q(n).

