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Maybe the wj; were not sacrosanct .. what about (1 —¢€) ?
€ > 0 is a constant.
What is space is small? Mapreduce in a few rounds?

More generally: Optimization over very large graphs?
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Augmentation paths is a not a good idea ...
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2.2 Find the best weighted matching in the sample.
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2.4 Update the prices.
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» Many O(1) approximations, in different models
Lattanzi, Mosley, Suri, Vassilvitskii '11, mapreduce.
» Unweighted: McGregor '05, 20(1/€) passes, O(n) streaming
» Bipartite: Ahn, Guha '11, O(e?log1/¢) rounds
Kapralov '13, O(e~2) in vertex arrival model.
» Weights, nonbipartite: dependence on n, time n©(/€) etc.
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# of truly adaptive steps to solve an LP.
# of truly adaptive steps to solve a Matching LP.
The standard relaxation does not work.
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Forget space requirements for now...
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Packing: O(n'/€) constraints, no structure , width..
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>ieu <ijij> — YicujguYi < |U| =1 for [U] odd.
Constraint on dual weights = affine combination of cuts!
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Unweighted Non-bipartite graphs...
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A New LP: Stage 2

Weighted Non-bipartite graphs. Assume weights are of form
wx = (14 €)X, not integers.

B =max ) ( > i _3ZMH<>
g* = maxz Wi Yij k (i.j)€Ex i
(i) Z (Vi — 21ik) < Yik) Vi, k
S ()eks
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Yy |5 VU k
“ 2
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The Dual-Primal Strategy (max version)

To solve [] * = maxc'y; 4y < 6 subject to y > 0.

ulATx > (1 - O(e))ulc

Solve [**] ¢ Q[A]: ¢ G(us,x) ’
xeQ:b'x<p
Px < 2q (the width = p is small)

Solve: x € Q[f], Px < 2q by solving

u/ATx — o¢"Px > (1 - O(e))ulc — o¢"q
G(us, x)
x€Q;b"x<B;Px<q, = Px<pq

Or provide a solution to [] such that y(i/) >0 = ug(i) >0

Clearly 4, A are related. But it need not be simple.
In particular [**] = 5* < (1+ O(¢))pB



(1 — ¢) Approximate Maximum Weighted Matching

1. Find an initial solution. Note: of the dual. Nontrivial.
2. For O(p/e) steps:

2.1 Sample n't'/P edges using current prices.

2.2 Find the best weighted matching in the sample.

2.3 Maintain the best weight matching found (say ) so far.
2.4 Update the prices.

1. Subdivide edges into t = O(i log n) blocks

2. Simulate t steps of a primal-dual algorithm
trying to prove the dual < 3(1 4+ O(e)).

3. Obtain new dual prices (of the dual).

Update —



Deferred Sparsifiers

Edge has a promise UU% < uj < ojv.

See the edges. Construct a data structure.
Then wuj; are known.

Construct a sparsifier preserving all cuts.

Needs a good oracle.



The Oracle: Surround the city by wood

Given u®, ¢ solve:
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Consider the bipartite case ...



The Oracle: Part 3.1
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The Oracle: Part 3.2

> it ( > —29Cik> > e ( > ug —3QZC//<) =7
ik 'Z(I',j)EEk k (i,j)EEk i

24
2X,'(k) < 7|;“/k Vi, k

(@)}

Xi — Xi(k) = 0 Vi k

inﬁﬂ

Let R={[i,k]} s.t. > uf —20(u > 0.

J:(ij)€Ex
S owe | DD uhk —20Gk | +
li,k]ER k> k* j:(i.j)€Ex

Z W Z uzy — 220Gk | versus ev/(123).

li.k|ER k<k* j:(i.j) € Ex



In the future
Your favorite combinatorial optimization problem.

A new perspective ...



In the future
Your favorite combinatorial optimization problem.

A new perspective ...

That’s all folks.



