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A Basic Question on Graphs: Maximum Matching

One of the first combinatorial algorithms, Edmonds ’65.
Weighted graph G = (V ,E ,w), find the maximum matching.

|V | = n, |E | = m. Possibly Nonbipartite. wij arbitrary.
Think m� n.

Maybe the w ij were not sacrosanct .. what about (1− ε) ?
ε > 0 is a constant.
What is space is small? Mapreduce in a few rounds?

More generally: Optimization over very large graphs?
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How to analyse/define it?

Augmentation paths is a not a good idea ...

1. Find an initial solution.

Note: of the dual. Nontrivial.

.

2. For O(p/ε) steps:

2.1

Sample

Sample n1+1/p edges using current prices.
2.2 Find the best weighted matching in the sample.
2.3 Maintain the best weight matching found (say β) so far.
2.4

Update

Update the prices.

Update =⇒


1. Subdivide edges into t = O( 1

pε log n) blocks

2. Simulate t steps of a primal-dual algorithm
trying to prove the dual ≤ β(1 + O(ε)).

3. Obtain new dual prices (of the dual).
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This Talk: The Overall Goal

Takeaway 1. (1− ε)-approximate Maximum Weighted Matching
Arbitrary order, find actual edges in a feasible integral solution.

O(n1+1/p) space, O(p/ε) rounds of adaptive sketching/sampling.
Sampling weight of edge depends on O(poly(log n, 1ε )) vertices
Running time O(m poly(log n, 1ε )).

Works for weighted non-bipartite b–matching.
Ahn-Guha, Arxiv 1307.4359

C.f. Lower bound for maximum by Guruswamy and Onak. Also,

I Many O(1) approximations, in different models
Lattanzi, Mosley, Suri, Vassilvitskii ’11, mapreduce.

O(p) rounds in O(n1+1/p) spaceI Unweighted: McGregor ’05, 2O(1/ε) passes, Õ(n) streaming

I Bipartite: Ahn, Guha ’11, O(ε−2 log 1/ε) rounds
Kapralov ’13, O(ε−2) in vertex arrival model.

I Weights, nonbipartite: dependence on n, time nO(1/ε) etc.



This Talk: The Overall Goal

Takeaway 1. (1− ε)-approximate Maximum Weighted Matching
Arbitrary order, find actual edges in a feasible integral solution.

O(n1+1/p) space, O(p/ε) rounds of adaptive sketching/sampling.
Sampling weight of edge depends on O(poly(log n, 1ε )) vertices
Running time O(m poly(log n, 1ε )).

Works for weighted non-bipartite b–matching.
Ahn-Guha, Arxiv 1307.4359

C.f. Lower bound for maximum by Guruswamy and Onak. Also,

I Many O(1) approximations, in different models
Lattanzi, Mosley, Suri, Vassilvitskii ’11, mapreduce.

O(p) rounds in O(n1+1/p) spaceI Unweighted: McGregor ’05, 2O(1/ε) passes, Õ(n) streaming

I Bipartite: Ahn, Guha ’11, O(ε−2 log 1/ε) rounds
Kapralov ’13, O(ε−2) in vertex arrival model.

I Weights, nonbipartite: dependence on n, time nO(1/ε) etc.



This Talk: The Overall Goal

Takeaway 1. (1− ε)-approximate Maximum Weighted Matching
Arbitrary order, find actual edges in a feasible integral solution.

O(n1+1/p) space, O(p/ε) rounds of adaptive sketching/sampling.
Sampling weight of edge depends on O(poly(log n, 1ε )) vertices
Running time O(m poly(log n, 1ε )).

Works for weighted non-bipartite b–matching.
Ahn-Guha, Arxiv 1307.4359

C.f. Lower bound for maximum by Guruswamy and Onak.

Also,

I Many O(1) approximations, in different models
Lattanzi, Mosley, Suri, Vassilvitskii ’11, mapreduce.

O(p) rounds in O(n1+1/p) spaceI Unweighted: McGregor ’05, 2O(1/ε) passes, Õ(n) streaming
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This Talk: A Strategy

Takeaway 2. A Dual-Primal Strategy:
Solve the dual using sparsifiers of the weights on constraints.
(Note: these weights are now primal assignments.)
Prove: No progress (for the dual) on specific sparsifier =⇒

That sparsifier contains a good primal solution.

Not true about arbitrary sparsifiers.

Matching → Find the subgraph that contains it.

What is the big deal?

O(1/ε) iterations using O(n1.1) space.
Second Order: Ω(ε2 + log n).

Best First Order: Bienstock Iyengar, O

(√
|variables|

ε

)
.

# of truly adaptive steps to solve an LP.
# of truly adaptive steps to solve a Matching LP.
The standard relaxation does not work.
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The Standard Matching Polytope

β∗ = max
∑

(i,j) wijyij∑
j yij ≤ 1∑
i,j∈U yij ≤

⌊
|U|
2

⌋
∀U

yij ≥ 0

β∗ = min
∑

i xi +
∑

U

⌊
|U|
2

⌋
zU

xi + xj +
∑

i,j∈U zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Forget space requirements for now...

Primal-dual & Problems ...
Packing: O(n1/ε) constraints, no structure

, width..

Covering:

width (sensitivity) ..

∑
i∈U

(∑
j yij

)
−
∑

i∈U,j 6∈U yij ≤ |U| − 1 for |U| odd.

Constraint on dual weights = affine combination of cuts!
Cut-Sparsifiers exists. Maybe we can sparsify dual weights?

Problem 1: Cut sparsifiers do not preserve difference of cuts.
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A New LP: Stage 1

Unweighted Non-bipartite graphs...
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zU ≤ 3

xi , zU ≥ 0



A New LP: Stage 2

Weighted Non-bipartite graphs. Assume weights are of form
wk = (1 + ε)k , not integers.

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1

∑
i,j∈U

yij ≤
⌊
|U|
2

⌋
∀U

yij ≥ 0

β̂ = max
∑
k

ŵk

 ∑
(i,j)∈Êk

yij − 3
∑
i

µik


∑

(i,j)∈Êk

(yij − 2µik) ≤ yi(k) ∀i , k∑
k

yi(k) ≤ 1 ∀i

∑
k≥`

 ∑
(i,j)∈Êk ,i,j∈U

yij −
∑
i∈U

µik

 ≤ ⌊ |U|
2

⌋
∀U, `

yij , yi(k), µik ≥ 0



The Dual-Primal Strategy (max version)

To solve [∗] β∗ = max cTy; Ay ≤ b subject to y ≥ 0.

Solve [**]



Q[β] :


uT
s ATx ≥ (1− O(ε))uT

s c
G(us , x)
x ∈ Q; bTx ≤ β

Px ≤ 2q (the width =⇒ ρ is small)

Solve: x ∈ Q[β],Px ≤ 2q by solving
uT
s ATx− %ζTPx ≥ (1− O(ε))uT

s c− %ζTq
G(us , x)
x ∈ Q; bTx ≤ β; Pix ≤ qi =⇒ Px ≤ ρiq

Or provide a solution to [∗] such that y(i) > 0 =⇒ us(i) > 0

Clearly A,A are related. But it need not be simple.
In particular [**] =⇒ β∗ ≤ (1 + O(ε))β
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(1− ε) Approximate Maximum Weighted Matching

1. Find an initial solution. Note: of the dual. Nontrivial.

2. For O(p/ε) steps:

2.1 Sample n1+1/p edges using current prices.
2.2 Find the best weighted matching in the sample.
2.3 Maintain the best weight matching found (say β) so far.
2.4 Update the prices.

Update =⇒


1. Subdivide edges into t = O( 1

pε log n) blocks

2. Simulate t steps of a primal-dual algorithm
trying to prove the dual ≤ β(1 + O(ε)).

3. Obtain new dual prices (of the dual).



Deferred Sparsifiers

Edge has a promise σij
1
ν ≤ uij ≤ σijν.

See the edges. Construct a data structure.

Then uij are known.

Construct a sparsifier preserving all cuts.

Needs a good oracle.



The Oracle: Surround the city by wood

Given us , ζ solve:

∑
i,k

xi(k)

 ∑
j :(i,j)∈Êk

usijk − 2%ζik

 +
∑

U∈Os ,`

zU,`

∑
k≥`

 ∑
(i,j)∈Êk ,i,j∈U

usijk − %
∑
i∈U

ζik




≥ (1− O(ε))
∑
k

ŵk

 ∑
(i,j)∈Êk

usijk − 3%
∑
i

ζik


2xi(k) +

∑
`≤k

 ∑
U∈Os ,i∈U

zU,`

 ≤ ( 24

ε
+

24

ε2

)
ŵk ∀i, k

zU,`

∑
k≤`

 ∑
(i,j)∈Êk ,i,j∈U

usijk −
∑
i∈U

 ∑
j 6∈U,(i,j)∈Êk

usijk



 ≥ 0 ∀U, `

xi − xi(k) ≥ 0 ∀i, k∑
i

xi +
∑

`,U∈Os

zU,`

⌊ |U|
2

⌋
≤ β

xi , xi(k), zU,` ≥ 0

Consider the bipartite case ...



The Oracle: Part 3.1

∑
i,k

xi(k)

 ∑
j :(i,j)∈Êk

usijk − 2%ζik

 ≥∑
k

ŵk

 ∑
(i,j)∈Êk

usijk − 3%
∑
i

ζik

 = γ

2xi(k) ≤
24

ε
ŵk ∀i , k

xi − xi(k) ≥ 0 ∀i , k∑
i

xi ≤ β

Let R = {[i , k]} s.t.∑
j :(i ,j)∈Êk

usijk − 2%ζik > 0.

For each i determine the largest k∗i s.t.,∑
[i ,k]∈R,k>k∗i

 ∑
j :(i ,j)∈Êk

usijk − 2%ζik

 ≤ γ/β

∑
(i,j)∈Êk

(yij − 2µik) ≤ yi(k) ∀i , k∑
k

yi(k) ≤ 1 ∀i
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∑
i,k

xi(k)

 ∑
j :(i,j)∈Êk

usijk − 2%ζik

 ≥∑
k

ŵk

 ∑
(i,j)∈Êk

usijk − 3%
∑
i

ζik

 = γ

2xi(k) ≤
24

ε
ŵk ∀i , k

xi − xi(k) ≥ 0 ∀i , k∑
i

xi ≤ β
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j :(i ,j)∈Êk
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For each i determine the largest k∗i s.t.,∑
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 ∑
j :(i ,j)∈Êk
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 ≤ γ/β
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(i,j)∈Êk

(yij − 2µik) ≤ yi(k) ∀i , k∑
k

yi(k) ≤ 1 ∀i



The Oracle: Part 3.2

∑
i,k

xi(k)

 ∑
j :(i,j)∈Êk

usijk − 2%ζik

 ≥∑
k

ŵk

 ∑
(i,j)∈Êk

usijk − 3%
∑
i

ζik

 = γ

2xi(k) ≤
24

ε
ŵk ∀i , k

xi − xi(k) ≥ 0 ∀i , k∑
i

xi ≤ β

Let R = {[i , k]} s.t.
∑

j :(i ,j)∈Êk

usijk − 2%ζik > 0.

∑
[i ,k]∈R,k>k∗i

wk∗i

 ∑
j :(i ,j)∈Êk

usijk − 2%ζik

+

∑
[i ,k]∈R,k≤k∗i

wk

 ∑
j :(i ,j)∈Êk

usijk − 2%ζik

 versus εγ/(12β).



In the future

Your favorite combinatorial optimization problem.

A new perspective ...

That’s all folks.
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