QU fom ok Indexing Big Data Iokutek.
Michael A. Bender

ingest data

organize data on disks query your data

QU fom ok Indexing Big Data Iokutek.
Michael A. Bender

ingest data

organize data on disks query your data

T T

Goal: Index big data so that it can be queried quickly.

Setting of Talk-- “Type Il streaming”

Type Il streaming: Collect and store streams of data to answer queries.

Data is stored on disks.
« Dealing with disk latency has similarities to dealing with network latency.

We’ll discuss indexing.
« We want to store data so that it can be queried efficiently.
« To discuss: relationship with graphs.

Setting of Talk-- “Type Il streaming”

Sorry it
didn’t render.

Type Il streaming: Collect and store streams of data to answer queries.

Data is stored on disks.
« Dealing with disk latency has similarities to dealing with network latency.

We’ll discuss indexing.
« We want to store data so that it can be queried efficiently.
« To discuss: relationship with graphs.

For on-disk data, one traditionally sees funny
tradeoffs in the speeds of data ingestion, query
speed, and freshness of data.

™ s L = fe
- V..
_) o » D LA — -
C 5 7 vy
a B 8 b {
N y \ ol
[u| N
N\ ; ol N
. & R & -]
ingest data M : 4\ :
= L J 03 ¢ =
~ (1w = g 11E S
.) . |
< % et {+] G |
g 1 o 22)
N . / v cee
N) e Sl W\ : i Uy -
: (G >3 \ | v . —— : 2N
&) ¢ Q o
$ (wrenz \ | - f ¥
| e 3)
D

organize data on disks query your data

Funny tradeoff in ingestion, querying, freshness

- “Select queries were slow until | added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking

forever.”

» Comment on mysqlperformanceblog.com

queries +
answers

| ‘\. ﬁ‘\\ﬁ ‘
~] i 3 - “‘ "y %
%‘\J S, s, 0N

=P WY s — vt .:
\ 9 J A s - »
(5% %% 4 N
data . \——-\) 7Vl P :
o o ‘ Q - Q"WM\ f \\ : \
Ingestlon) @ a2)3 E

query processor

data indexing

Funny tradeoff in ingestion, querying, freshness

- “Select queries were slow until | added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking
forever.”

» Comment on mysqlperformanceblog.com

* “I'm trying to create indexes on a table with 308 million rows. It took ~20

minutes to load the table but 10 days to build indexes on it.”
» MySQL bug #9544

(queries +
/ answers
%\J “
data \@‘)

ingestion

query processor

data indexing

Funny tradeoff in ingestion, querying, freshness

- “Select queries were slow until | added an index onto the timestamp field...
Adding the index really helped our reporting, BUT now the inserts are taking

forever.”

» Comment on mysqlperformanceblog.com

* “I'm trying to create indexes on a table with 308 million rows. It took ~20

minutes to load the table but 10 days to build indexes on it.”
» MySQL bug #9544

* “They indexed their tables, and indexed them well,

And lo, did the queries run quick!
But that wasn’t the last of their troubles, to tell-

Their insertions, like treacle, ran thick.”

» Not from Alice in Wonderland by Lewis Carroll

Y
AN

@
- \%)

queries +
answers

data
ingestion

query processor

data indexing

Tradeoffs come from different ways to organize data on disk

Like a
Iibrarian?

Tradeoffs come from different ways to organize data on disk

Like a
librarian??

M e ',"". ' -u--- ‘4.
«te 1 TTTH T
i ---!-LLL;... ML

SR e
uJ M __IJAL

Fast to find stuff.
Slow to add stuff.

“Indexing”

Tradeoffs come from different ways to organize data on disk

Like a Like a
librarian®? teenager?

Fast to flnd stuﬁ
Slow to add stuff.

“Indexing”

Tradeoffs come from different ways to organize data on disk

Like a Like a
librarian®? teenager?
3 l R 4
T
LJ-- S
A M
Fast to flnd stuﬁ Fast to add stuff
Slow to add stuff. Slow to find stuff.

“Indexing” “Logging”

\\’- N \
Rractal-treg®
index’

R, This talk: we don’t
need tradeoffs

Write-optimized data
structures:

eFaster indexing
(10x-100x)

eFaster queries
eFresh data
These structures

efficiently scale to very
big data sizes.

AR

RN

\ '/I‘ \ 1

N\ Yl
\,

)
\)

\

N7

\
|-

'\

A\

BRI

Our algorithmic work appears in two commercial products

Tokutek’s high-performance MySQL and MongoDB.

TokuDB TokuMX

Application Application

libFT

File System File System

libFT

Our algorithmic work appears in two commercial products

Tokutek’s high-performance MySQL and MongoDB.

TokuDB TokuMX
/ The Fractal Tree \
engine implements the
Application Application persistent structures
for storing data on disk.
MySQL Database Stanq ard MongoDB
) -- drivers,
-- SQL processing,
-- query optimization = CLER [RNgUERE; Sl
query op -- data model

libFT libFT .

File System File System

Write-Optimized Data
Structures

<

[

Write-Optimized Data
Structures

Would you like
them with an
a/gorithmic%\
performance
model?

An algorithmic performance model

How computation works:
 Data is transferred in blocks between RAM and disk.
- The number of block transfers dominates the running time.

Goal: Minimize # of block transfers

« Performance bounds are parameterized by
block size B, memory size M, data size N.

[Aggarwal+Vitter ’88]

1

Memory and disk access times

Disks: ~6 milliseconds per access.

RAM: ~60 nanoseconds per access

Memory and disk access times

Disks: ~6 milliseconds per access.

RAM: ~60 nanoseconds per access

Analogy:
 disk = elevation of Sandia peak
« RAM = height of a watermellon

Memory and disk access times

Disks: ~6 milliseconds per access.

RAM: ~60 nanoseconds per access

Analogy:
 disk = elevation of Sandia peak
« RAM = height of a watermellon

Analogy:
« disk = walking speed of the giant tortoise (0.3mph)
 RAM = escape velocity from earth (25,000 mph)

The traditional data structure for disks is the B-tree

--

The traditional data structure for disks is the B-tree

Adding a new datum to an N-element B-tree
uses O(logsN) block transfers in the worst case.

(Even paying one block transfer is too expensive.)

Write-optimized data structures perform better

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, lacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].

Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

Some write-optimized
structures

Insert/delete

- |f B=1024, then insert speedup is B/logB=100.
- Hardware trends mean bigger B, bigger speedup.
« Less than 1 1/0O per insert.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Optimal SearCh_lnsert TradeOﬂ: [Brodal, Fagerberg 03]

insert point query
Optimal
tradeoff O (10g1+B€ N) 0 (logy. e N)
(function of €=0...1) Bl—-c
B(-::Ie)e O (logg N) O (log, N)
= logg N
= O< VB) O (logg N)

0 log N
£=0 B O (log N)

| Ox-100x faster inserts

llustration of Optimal TradeofT s, Fagererg s

)
(7))
(g}
LL.

(7))

()

=

()

)

O

o

=

O

o 3
O
v

\ Optimal Curve

Slow

Inserts

llustration of Optlmal Tradeoftf [Brodal, Fagerberg 03]

4 Target of opportunity
i)
g B-tree w
LL @ Optimal Curve
%) Insertions improve by 7\
QD | 0x-100x with
GL) almost no loss of point-
- query performance
i)
=
O
- 3
e,
%0 Logging
w
>
Slow Fast

Inserts

Performance of write-optimized data structures

Write performance on large data

iiBench Benchmark (throughput) iiBench - 1 Billion Row Insertion Test

TokuMX vs. MongoDB 45,000
(higher is better)
25000 40,000
TokuMX ——
MongoDB —— 35,000
20000 ~
30,000
3 2
)
15000 LR T L T T OO §25,000
3 : ——TokuDB 5.2.7
’ 220,000 - s B
) 3 WWWWWNWW InnoDB 1.1.8
10000 | ey N A ad
§ 15,000
' >|00x faster V\/\ L2 fmcpmm
TR 10,000 -
5000_W , \ I 6X Taster
M”““”WWMM”’\W 5,000
0 L 1 1] w
0 T T T T T T T T T

10000000 30000000 50000000 70000000 90000000
Inserted Rows

0 100 200 300 400 500 600 700 800 900 1000

Rows Inserted (M)

Performance of write-optimized data structures

Write performance on large data

iiBench Benchmark (throughput) iiBench - 1 Billion Row Insertion Test

TokuMX vs. MongoDB 45,000
(higher is better)
TokuMX
MongoDB 35,000
30,000
) -]
) S
15000 AT § 2>000
’ : ——TokuDB 5.2.7
5 320,000 - s
; H WMWWMMWNWW ~——1InnoDB 1.1.8
10000 e LTI alo a1 1 O (\ -~
; 15,000
| k‘"‘r >|00x faster VV\ o frctar
5000 M 10,000 \ loxX 1aster
' Mw
oy “ﬁ”’wwm 5,000
0] | ! 1 Yﬂ 1 w
10000000 30000000 50000000 70000000 90000000 0 ' ' ' ‘ ' ' ' ' ‘ ‘
0 100 200 300 400 500 600 700 800 900 1000

Inserted Rows Rows Inserted (M)

Later: why fast indexing leads to faster queries.

How to Build Write-

write-optimized

T am the Lorax. I speak for the trees.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
- A balanced binary tree with buffers of size B

@

@) @

00 Q00) CI'ED CI'D

Inserts + deletes:

- Send insert/delete messages down from the root and store
them in buffers.

« When a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
- A balanced binary tree with buffers of size B

QO

@) @

00 Q00) CI'ED CI'D

Inserts + deletes:

- Send insert/delete messages down from the root and store
them in buffers.

« When a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
- A balanced binary tree with buffers of size B

Q00

@) @

00 Q00) CI'ED CI'D

Inserts + deletes:

- Send insert/delete messages down from the root and store
them in buffers.

« When a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
- A balanced binary tree with buffers of size B

Q000

@) @

00 Q00) CI'ED CI'D

Inserts + deletes:

- Send insert/delete messages down from the root and store
them in buffers.

« When a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
- A balanced binary tree with buffers of size B

O
Q000
@) @
00 Q00) CI'ED CI'D

Inserts + deletes:

- Send insert/delete messages down from the root and store
them in buffers.

« When a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
A balanced binary tree with buffers of size B

)

—

(@ 90)

RN

(0000

00 Q00) CI'ED CI'D

Inserts + deletes:

- Send insert/delete messages down from the root and store
them in buffers.

- When a buffer fills up, flush.

Analysis of writes

An insert/delete costs amortized O((log N)/B) per
Insert or delete

A buffer flush costs O(1) & sends B elements down one
level

« It costs O(1/B) to send element down one level of the tree.
« There are O(log N) levels in a tree.

)

—

(@ 90)

RN

(0000

00 Q00) CI'ED CI'D

Difficulty of Key Accesses

Difficulty of Key Accesses

. _ .
ALE
N

Analysis of point queries

To search:

« examine each buffer along a single root-to-leaf path.
* This costs O(log N).

@

(0 00) (0000

CI'D Q00 (00) CI'D

Obtaining optimal point queries + very fast inserts

Point queries cost O(log,s N)= O(logs N)
 This is the tree height.

Inserts cost O((logsN)/\/B)
» Each flush cost O(1) I/Os and flushes /B elements.

Powerful and Explainable

Write-optimized data structures are very
powerful.

They are also not hard to teach in a standard
algorithms course.

What the world looks like

Insert/point query asymmetry
* Inserts can be fast: >50K high-entropy writes/sec/disk.

 Point queries are necessarily slow: <200 high-entropy reads/
sec/disk.

We are used to reads and writes having about the
same cost, but writing is easier than reading.

The right read optimization is write optimization

The right index makes queries run fast.
« Write-optimized structures maintain indexes efficiently.

data
ingestion

28

data indexing

(rmy) 4

queries

answers

query processor

The right read optimization is write optimization

The right index makes queries run fast.
« Write-optimized structures maintain indexes efficiently.

Fast writing is a currency we use to accelerate
queries. Better indexing means faster queries.

queries

1 | o y w
\ A By o 3 ._f" h N
) v = ‘.;;A ,:r :-‘ Y/
=) | " , : 3)
\ s "
N \ AN | e - Nl \
Ky 3 \ - A ’ ‘ AN . L)
J S = 'y 4 ! . -
B - = > ‘.'Q' i 4B ‘I‘ -~
P~ . s, 18 g
) i"\. WL o o f . ? ' B -A\I
=) Proa ¢ 3
data ‘N~ ; X/
~ AN . | DAY /

ingestion

: (@ .:;ﬂ(\ - a. n Swe rs
= (e Tz,
('v\"v (Tewg; ‘ s 4

query processor

28 data indeXing

The right read optimization is write optimization

4 A Index maintenance has
Adding more indexes been notoriously slow.
leads to faster queries.

- J

100
80

60

o
£ 20,000 -
o

-3

40

15,000

20

10,000

Week 42 Week 44 Week 46 Week 48 Week 50 Week 52 5,000 MongoDB

0 - - -
0 100 200 300 400 500 600 700 800 900 1000
Rows Inserted (M)

query I/O load on a production server
indexing rate

If we can insert faster, we can afford to maintain more
indexes (i.e., organize the data in more ways.)

=
O
N
-
O
-
-
S
o)

Summery Slide

The right read optimization is ¥
write optimization.

Summery Slide

The right read optimization is
write optimization.

Summery Slide

The right read optimization is
write optimization.

How do write-optimized data
structures help us with graph queries?

Summery Slide

The right read optimization is
write optimization.

How do write-optimized data
structures help us with graph queries?

Can we use write-optimization on
large Sandia machines?
There are similar challenges with
network and I/O latency.

