
30,000 Foot View of Databases

oy vey

???
???

???

organize data on disks query your data

365

42

ingest data

Big data problemIndexing Big Data
Michael A. Bender

I’ll focus on streaming/indexing. I’m interested in learning how it can help with graph analysis.

30,000 Foot View of Databases

oy vey

???
???

???

organize data on disks query your data

365

42

ingest data

Big data problemIndexing Big Data
Michael A. Bender

Goal: Index big data so that it can be queried quickly.
I’ll focus on streaming/indexing. I’m interested in learning how it can help with graph analysis.

Setting of Talk-- “Type II streaming”

Type II streaming: Collect and store streams of data to answer queries.
Data is stored on disks.

• Dealing with disk latency has similarities to dealing with network latency.

We’ll discuss indexing.
• We want to store data so that it can be queried efficiently.
• To discuss: relationship with graphs.

Setting of Talk-- “Type II streaming”

Type II streaming: Collect and store streams of data to answer queries.
Data is stored on disks.

• Dealing with disk latency has similarities to dealing with network latency.

We’ll discuss indexing.
• We want to store data so that it can be queried efficiently.
• To discuss: relationship with graphs.

Sorry it
didn’t render.

For on-disk data, one traditionally sees funny
tradeoffs in the speeds of data ingestion, query
speed, and freshness of data.

oy vey

???
???

???

organize data on disks query your data

365

42

ingest data

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, freshness
• “Select queries were slow until I added an index onto the timestamp field...

Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like treacle, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, freshness
• “Select queries were slow until I added an index onto the timestamp field...

Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like treacle, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries +
answers

???
42

data
ingestion

Funny tradeoff in ingestion, querying, freshness
• “Select queries were slow until I added an index onto the timestamp field...

Adding the index really helped our reporting, BUT now the inserts are taking
forever.”
‣ Comment on mysqlperformanceblog.com

• “I'm trying to create indexes on a table with 308 million rows. It took ~20
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “They indexed their tables, and indexed them well,
 And lo, did the queries run quick!
 But that wasn’t the last of their troubles, to tell–
 Their insertions, like treacle, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll

Tradeoffs come from different ways to organize data on disk

Like a
librarian?

Tradeoffs come from different ways to organize data on disk

Like a
librarian?

Fast to find stuff.
Slow to add stuff.

“Indexing”

Tradeoffs come from different ways to organize data on disk

Like a
teenager?

Like a
librarian?

Fast to find stuff.
Slow to add stuff.

“Indexing”

Tradeoffs come from different ways to organize data on disk

Like a
teenager?

Like a
librarian?

Fast to find stuff.
Slow to add stuff.

“Indexing”

Fast to add stuff.
Slow to find stuff.

“Logging”

This talk: we don’t
need tradeoffs

Write-optimized data
structures:
•Faster indexing

(10x-100x)
•Faster queries
•Fresh data
These structures
efficiently scale to very
big data sizes.

Fractal-tree®
index

LSM
tree

Bɛ-tree

8

Our algorithmic work appears in two commercial products

Tokutek’s high-performance MySQL and MongoDB.

File System

MySQL Database
-- SQL processing,
-- query optimization

Application

libFT

Disk/SSD

TokuDB

File System

Standard MongoDB
-- drivers,
-- query language, and
-- data model

Application

libFT

TokuMX

Our algorithmic work appears in two commercial products

Tokutek’s high-performance MySQL and MongoDB.

File System

MySQL Database
-- SQL processing,
-- query optimization

Application

libFT

Disk/SSD

TokuDB

File System

Standard MongoDB
-- drivers,
-- query language, and
-- data model

Application

libFT

TokuMX
The Fractal Tree

engine implements the
persistent structures

for storing data on disk.

Write-Optimized Data
Structures

10

Write-Optimized Data
Structures

Would you like
them with an

algorithmic
performance

model?

10

Don’t Thrash: How to Cache Your Hash in Flash

How computation works:
• Data is transferred in blocks between RAM and disk.
• The number of block transfers dominates the running time.

Goal: Minimize # of block transfers
• Performance bounds are parameterized by

block size B, memory size M, data size N.

An algorithmic performance model

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]
11

Memory and disk access times

Disks: ~6 milliseconds per access.
RAM: ~60 nanoseconds per access

Memory and disk access times

Disks: ~6 milliseconds per access.
RAM: ~60 nanoseconds per access

Analogy:
• disk = elevation of Sandia peak
• RAM = height of a watermellon

Memory and disk access times

Disks: ~6 milliseconds per access.
RAM: ~60 nanoseconds per access

Analogy:
• disk = walking speed of the giant tortoise (0.3mph)
• RAM = escape velocity from earth (25,000 mph)

Analogy:
• disk = elevation of Sandia peak
• RAM = height of a watermellon

The traditional data structure for disks is the B-tree

O(logBN)

The traditional data structure for disks is the B-tree

Adding a new datum to an N-element B-tree
uses O(logBN) block transfers in the worst case.
(Even paying one block transfer is too expensive.)

O(logBN)

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimized data structures perform better

• If B=1024, then insert speedup is B/logB≈100.
• Hardware trends mean bigger B, bigger speedup.
• Less than 1 I/O per insert.

B-tree Some write-optimized
structures

Insert/delete O(logBN)=O() O()logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Don’t Thrash: How to Cache Your Hash in Flash

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

insert point query
Optimal
tradeoff

(function of ɛ=0...1)

B-tree
(ɛ=1)

O

✓
logB Np

B

◆

O (logB N)

O (logB N)

ɛ=1/2

O

✓
logN

B

◆

O (logN)ɛ=0

O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆

O (logB N)

10
x-

10
0x

 fa
st

er
 in

se
rt

s

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Insertions improve by
10x-100x with

almost no loss of point-
query performance

Target of opportunity

Don’t Thrash: How to Cache Your Hash in Flash

Performance of write-optimized data structures

MongoDB MySQL

Write performance on large data

16x faster>100x faster

Don’t Thrash: How to Cache Your Hash in Flash

Performance of write-optimized data structures

MongoDB MySQL

Write performance on large data

16x faster>100x faster

Later: why fast indexing leads to faster queries.

How to Build Write-
Optimized Structures

How to Build Write-
Optimized Structures

write-optimized

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

20

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

20

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

20

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

20

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

20

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

21

Don’t Thrash: How to Cache Your Hash in Flash

Analysis of writes
An insert/delete costs amortized O((log N)/B) per
insert or delete
• A buffer flush costs O(1) & sends B elements down one

level
• It costs O(1/B) to send element down one level of the tree.
• There are O(log N) levels in a tree.

22

Difficulty of Key Accesses

Difficulty of Key Accesses

Don’t Thrash: How to Cache Your Hash in Flash

Analysis of point queries

To search:
• examine each buffer along a single root-to-leaf path.
• This costs O(log N).

24

Don’t Thrash: How to Cache Your Hash in Flash

Obtaining optimal point queries + very fast inserts

Point queries cost O(log√B N)= O(logB N)
• This is the tree height.

Inserts cost O((logBN)/√B)
• Each flush cost O(1) I/Os and flushes √B elements.

√B

B

...

fanout: √B

25

Don’t Thrash: How to Cache Your Hash in Flash

Powerful and Explainable
Write-optimized data structures are very
powerful.
They are also not hard to teach in a standard
algorithms course.

26

Don’t Thrash: How to Cache Your Hash in Flash

What the world looks like
Insert/point query asymmetry
• Inserts can be fast: >50K high-entropy writes/sec/disk.
• Point queries are necessarily slow: <200 high-entropy reads/

sec/disk.

We are used to reads and writes having about the
same cost, but writing is easier than reading.

Reading is hard.Writing is easier.

27

Don’t Thrash: How to Cache Your Hash in Flash

The right read optimization is write optimization

The right index makes queries run fast.
• Write-optimized structures maintain indexes efficiently.

data indexing query processor

queries

???
42

answers

data
ingestion

28

Don’t Thrash: How to Cache Your Hash in Flash

The right read optimization is write optimization

The right index makes queries run fast.
• Write-optimized structures maintain indexes efficiently.

Fast writing is a currency we use to accelerate
queries. Better indexing means faster queries.

data indexing query processor

queries

???
42

answers

data
ingestion

28

Don’t Thrash: How to Cache Your Hash in Flash

The right read optimization is write optimization

MongoDB

TokuMX

Adding more indexes
leads to faster queries.

If we can insert faster, we can afford to maintain more
indexes (i.e., organize the data in more ways.)

query I/O load on a production server

Index maintenance has
been notoriously slow.

indexing rate

Summery Slide

Summery Slide

The right read optimization is
write optimization.

Summery Slide

We don’t need to trade off ingestion
speed, query speed, and data freshness.

The right read optimization is
write optimization.

Summery Slide

How do write-optimized data
structures help us with graph queries?

We don’t need to trade off ingestion
speed, query speed, and data freshness.

The right read optimization is
write optimization.

Summery Slide

How do write-optimized data
structures help us with graph queries?

We don’t need to trade off ingestion
speed, query speed, and data freshness.

The right read optimization is
write optimization.

Can we use write-optimization on
large Sandia machines?

There are similar challenges with
network and I/O latency.

